新闻  |   论坛  |   博客  |   在线研讨会
百纳米就好使!光芯片缓解芯片瓶颈难题
中国科学报 | 2021-05-23 21:50:25    阅读:187   发布文章

作者|张双虎


IBM研发出2纳米制程芯片的消息尚未传开,台积电和合作伙伴就宣布取得了1纳米以下制程芯片技术突破。
业内普遍认为,芯片技术日新月异的同时,也一步步逼近其物理理论的极限。
近日,瑞士洛桑联邦理工学院(EPFL)教授Tobias Kippenberg团队开发出一种采用氮化硅衬底制造集成光子电路(光子芯片)的技术,得到了创纪录的低光学损耗,且芯片尺寸小。相关研究发表在《自然—通讯》上。
光子芯片奋起直追,也许能帮助人们突破摩尔定律的“天花板”,开辟新的“赛道”。

氮化硅微腔光学芯片图片来源:《自然—通讯》


“硅家族”与大马士革工艺


光子芯片通常由硅制成,硅在地壳中含量丰富且具有良好的光学特性,但难以满足集成光子芯片所需的一切条件,因此出现了诸多新材料加以替代,如氮化硅、二氧化硅、氮化铝、铌酸锂、碳化硅等。
Tobias Kippenberg团队采用一种氮化硅光子大马士革工艺(光子镶嵌工艺)技术。
大马士革工艺是一种非常古老的工艺,最早可以追溯到阿拉伯人在他们的武器和装饰上面做颜色的镶嵌和绘图。
这个工艺要先做出图形轮廓,然后把颜色材料镶嵌到轮廓中再进行抛光,这样就得到一个色彩艳丽的图案。
“大马士革工艺思路曾被用在早期以铜为材料的电子电路制造上。研究当中,我们把氮化硅大马士革工艺用到集成光路制造上,得到了极低的光损耗。”
论文第一作者、EPFL微纳技术中心博士刘骏秋告诉《中国科学报》,“利用这一技术,我们制造了光损耗仅为1dB/m的集成光路,创下了所有非线性光子集成材料的纪录。”
使用这项新技术,研究人员在5平方毫米的芯片上制备了高品质因数的微谐振器和超过一米长的波导。
他们还报告了九成的制造良品率,这对于将来扩大工业生产规模至关重要。
“超低损耗的氮化硅集成光子芯片对未来通信、计算和6G技术都至关重要。这种类型的光子芯片可以将信息编码进光,再通过光纤传输,并成为光通信的一个核心组成部分。”刘骏秋说。

光子集成后发先至


“电子芯片工作时,可以理解为电信号输入芯片进行处理,比如存储、读取、进行运算等,之后再输出。与之类似,光子芯片是将光信号输入芯片,进行数据传输、存储、计算和输出的芯片。
刘骏秋表示,“相对于电子芯片,光子芯片虽然起步较晚,但有自己独特的优势。”
科学家认为,光具有天然的并行处理能力及成熟的波分复用技术,从而使光子芯片的数据处理能力、容量及带宽均大幅度提升。
光波的波长、频率、偏振态和相位等信息可以代表不同的数据,用来作为非常高效的通信种子源。
“光子芯片具有高运算速度、低功耗、低时延等特点,且不易受到温度、电磁场和噪声变化的影响。”
中科创星董事总经理张思申说,“光子芯片不必追求工艺尺寸的极限缩小,就能有更多的性能用以提升空间。”
“与电芯片相比,光芯片在诸多领域,比如通信、激光雷达、传感、图像分析方面有独一无二的优势。”
刘骏秋解释说,光芯片速率可以达到100G,比电芯片快很多,这样可以在光的通道上面做更多信息的编码,承载更多的信息,同时功耗比电芯片更小。因为光在传播中不会产生任何热效应,这和电子不一样,还有光和光之间不会有相互作用,不会受到背景电磁场干扰。
刘骏秋所在团队曾利用氮化硅光芯片架构光神经网络,使用一个卷积神经网络去求解矩阵,然后应用在浮雕过滤器上。相关成果发表在今年1月的《自然》上。
“我们把一个图像信号输入系统中,经过浮雕过滤器,它会强化高频信号、弱化低频信号,即实现强化图像边缘的目的。比如一辆小汽车的图片,它原来的车灯内部结构你可能看不到。经过浮雕过滤器处理的新图像中,车灯内部结构被强化了。”
刘骏秋说,“这证明了氮化硅光子芯片在光神经网络、深度学习方面有很好的应用。”
除人工智能外,光子芯片广泛用于激光雷达、微波滤波器、毫米波生成、天体光谱仪校准、低噪声微波生成,也可以用作中红外双梳光谱,测量气体当中的成分。
若应用到光学相关断层扫描,则可以看生物组织的结构。它还能用作数据中心开关,进行数据调控。

两条赛道的竞争与合作


刘骏秋说,通俗地理解,信息在手机或者电脑里进行处理主要使用电子芯片,但信息的传递是需要光纤的。
所以,到这一步就需要进行电光转换。
“目前,光和电是在两个‘赛道’上,各有自己的应用场景。”
“现在英特尔数据中心用的集成半导体激光器,就是将电信号转换成光信号,然后进行数据处理、编码和传输。英特尔每年向全世界输送数千万个这样的集成半导体激光器芯片。”
刘骏秋说,“光子集成电路相对于传统分立的‘光—电—光’处理方式降低了复杂度,提高了可靠性,能够以更低的成本构建一个具有更多节点的全新网络结构。虽然目前仍处于初级发展阶段,不过其成为光器件的主流发展趋势已成必然。”
“在逻辑运算领域,未来的趋势是光电集成的结合,还需要很长一段时间,才能实现全光计算。”
张思申说,“总体来说,目前只在个别计算和传输领域,光子芯片可以替代电子芯片。”
刘骏秋认为,从架构上可以看出,光子芯片系统整体非常复杂。
光子芯片系统里有光源、处理器、探测器,也需要各种材料之间集成的协同,很少有单个研究单位能够对整个系统进行架构和制备。
在制造工艺上,两者虽然流程和复杂程度相似,但光子芯片对结构的要求不像电芯片那样严苛,一般是百纳米级。
因此,光子芯片不会像电子芯片那样必须使用极紫外光刻机(EUV)。
“光的波长在百纳米到一微米量级,因此限制了光子器件的集成密度。但这同时也意味着,光芯片达到最理想的工作条件并不依赖最先进的半导体工艺制程,比如极紫外光刻机。
刘骏秋说,“这大大降低了对先进工艺的依赖,一定程度上缓解了当前芯片发展的瓶颈问题。
此外,光子芯片提供了全新的芯片设计架构思路,彻底颠覆原有的设计理念,有更多的设计创意空间。
“光有光的优势,电有电的优势。光的优势是稳定,不容易受外界影响。同时这也是光的劣势,意味着人们想操控光,改变它的状态,手段非常有限。”
刘骏秋说,“在某些应用场景中,两者也有竞争,比如神经网络。但更多的时候,二者是合作关系。光芯片技术目前还没有电芯片成熟,所以未知的因素很多,两者未来应该很好地衔接起来。”
对此,中国科学院微电子研究所研究员、集成电路先导工艺研发中心副主任罗军持同样观点。
“电子集成电路和光子集成电路之间是互补的关系。”
罗军对《中国科学报》说,“未来可以充分利用光子集成电路高速率传输和电子集成电路多功能、智能化的优点,在新的‘赛道’上跑出更好成绩。”

相关论文信息:

https://doi.org/10.1038/s41467-021-21973-z

https://doi.org/10.1038/s41586-020-03070-1


《中国科学报》 (2021-05-20 第3版 信息技术 原标题为《光电集成:芯片领域进入混合“赛道”》)


编辑 | 赵路排版 | 郭刚


*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。

参与讨论
登录后参与讨论
推荐文章
最近访客